Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.
نویسندگان
چکیده
Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters of a quadratic polynomial that is used to model the image quality metric directly from experimental input-output measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the least-squares estimate of the unknown aberration.
منابع مشابه
Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging
Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. T...
متن کاملPerformance evaluation of a sensorless adaptive optics multiphoton microscope.
A wavefront sensorless adaptive optics technique was combined with a custom-made multiphoton microscope to correct for specimen-induced aberrations. A liquid-crystal-on-silicon (LCoS) modulator was used to systematically generate Zernike modes during image recording. The performance of the instrument was evaluated in samples providing different nonlinear signals and the benefit of correcting hi...
متن کاملWavefront sensorless adaptive optics ophthalmoscopy in the human eye
Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor 'beacon' can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the sam...
متن کاملhack-Hartmann wavefront-sensor-based adaptive optics ystem for multiphoton microscopy
Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract. The imaging depth of t...
متن کاملAdaptive harmonic generation microscopy of mammalian embryos.
Adaptive optics is implemented in a harmonic generation microscope using a wavefront sensorless correction scheme. Both the second- and third-harmonic intensity signals are used as the optimization metric. Aberration correction is performed to compensate both system- and specimen-induced aberrations by using an efficient optimization routine based upon Zernike polynomial modes. Images of live m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 31 6 شماره
صفحات -
تاریخ انتشار 2014